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A Neural-Network Approach To Recognize Defect
Spatial Pattern In Semiconductor Fabrication

Fei-Long Chen and Shu-Fan Liu

Abstract—Yield enhancement in semiconductor fabrication is
important. Even though IC yield loss may be attributed to many
problems, the existence of defects on the wafer is one of the main
causes. When the defects on the wafer form spatial patterns, it
is usually a clue for the identification of equipment problems or
process variations. This research intends to develop an intelligent
system, which will recognize defect spatial patterns to aid in
the diagnosis of failure causes. The neural-network architecture
named adaptive resonance theory network 1 (ART1) was adopted
for this purpose. Actual data obtained from a semiconductor
manufacturing company in Taiwan were used in experiments with
the proposed system. Comparison between ART1 and another
unsupervised neural network, self-organizing map (SOM), was
also conducted. The results show that ART1 architecture can
recognize the similar defect spatial patterns more easily and
correctly.

Index Terms—ART1, defects, semiconductor, SOM, spatial pat-
tern recognition, yield.

I. INTRODUCTION

SEMICONDUCTOR manufacturing has emerged as one of
the most important world industries. Even with the highly

automated and precisely monitored facilities used to process the
complex manufacturing steps in a near particle free environ-
ment, processing variations in wafer fabrication still exist. The
causes of these variations may arise from equipment malfunc-
tions, delicate and difficult processing steps, or human mistakes.
In order to be competitive in the semiconductor manufacturing
industry, the detection of these problems becomes a critical issue
because yield performance is closely related to the control and
efficiency of the wafer manufacturing process.

Today, yield enhancement engineering usually focuses on
the investigation of low-yield lots, the elimination of defects,
process excursions, the correlation between electrical and
functional experiment results, and the improvement of baseline
product yield [2]. In general, the main cause of IC yield loss
can be attributed to defects on the wafers. A defect is defined
as anything that may cause a product to fail, whereas a fault
is any form of defect that induces product failure. Defect and
fault density requirements vary substantially with the maturity
of a process and the minimum feature sizes of the associated
product [1]. The occurrence of defects on a wafer may result
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in the yield loss of a single wafer or, more seriously, an entire
wafer lot must be discarded. Usually semiconductor fabs use
control charts to monitor the total number of defects found on
a wafer. However, this approach is not adequate for efficient
process variation detection and the yield may be underestimated
[2].

Since all of the yield enhancement tasks require that en-
gineers digest a tremendous amount of data, defect pattern
recognition is usually conducted through statistical data
analysis. Cunningham [3] classified the common statistics for
visual defect metrology into three types.

1) Quadrate Statistics:Defects distributed on a wafer are an-
alyzed to predict the yield model. Spatial pattern and de-
fect clustering phenomena are ignored. The occurrence
of a defect in any location is usually assumed to be in-
dependent of the occurrence of other defects at different
locations. Many models [4]–[10] have been based on this
type of statistics.

2) Cluster Statistics:The data values are the location co-
ordinates of the defects. Since the occurrence of defects
may violate the random assumption of the predictive yield
model, some research works have focused on the recogni-
tion of the defect-clustering phenomenon to enhance the
accuracy of yield prediction [11]–[17].

3) Spatial Point Pattern Statistics:In addition to defect clus-
ters, the spatial pattern of the defects usually provides
a good direction for problem solving. Ken [18] pointed
out that special process signatures appearing on the de-
fect map pattern might come from machines or processes.
Past experience has also pointed out that when there were
problems with machines or products, the clustered de-
fects on the wafer would be distributed in certain patterns.
Thus, spatial pattern recognition algorithms are therefore
necessary for detecting cluster signatures.

Typical spatial patterns include ring, semiring, scratch, re-
peat, centralized, radiated, and die-edge defect types. Tradition-
ally, these patterns are recognized by visually reviewing the de-
fects and classifying them according to some predetermined pat-
terns. Disadvantages of this approach include the substantial
effort invested in training the defect review/classification task
and the high possibility of recognition variability even when in-
spected by the same operator. For this reason, the development
of an automated system is highly desirable.

According to Cunningham’s survey [3], most of the existing
spatial pattern recognition algorithms can only detect scratch
patterns based on the collinear concept. For instance, the de-
fect classification system (DCS-1) developed by ADE coop-
eration was the first commercially available automated defect
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Fig. 1. Flow of data analysis.

classification tool [19]. This system combined the image pro-
cessing techniques and fuzzy logic expert system to recognize
the scratch pattern or other patterns described by users. Du-
vivier [20] developed a statistical method to detect and classify
spatial defect patterns. In his methods, all the wafermaps were
examined to generate the so-called random ratios (RR). If all
the failing die were caused by a spatial signature, then RR.
Otherwise, if they were all spatially independent, then RR.
After that, a segmentation technique was applied to further de-
scribe the nature of the detected signature. The major limita-
tion of this approach is that different predetermined criteria will
be required for the detection of different defect patterns. Lee
et al. [21] presented a computer-based pattern matching algo-
rithm for the defect pattern detection. In the pattern matching
procedure, a supervised learning concept was adopted. Enough
standard or representative training templates must be provided
in order to obtain good defect pattern recognition. This became
the main shortcoming of their method. Knights Technology has
announced a software tool named “spatial pattern recognition
(SPaR) using the defect map pattern analysis on semiconductor
wafers. A major component of this software is a signature clas-
sifier, which can be trained by users to build up the knowl-
edge base. The algorithm behind the software was developed
at Oak Ridge National Laboratories. The major shortcoming
of this algorithm is the tremendous amount of time consuming
in training new patterns. The NeuralNet Engineering Data
Analysis (NEDA) developed by Defect & Yield Management
(DYM), Inc. applied neural-network techniques to detect the

similar patterns. Again, enough templates must be provided to
train the knowledge base.

In viewing of the limitations of the above methods, this re-
search intends to develop an intelligent algorithm for detecting a
greater number of differing spatial patterns on a wafer. In order
to speed up the detection process, neural-network architecture
named adaptive resonance theory (ART1) was adopted in this
research.

II. DEFECTSPATIAL PATTERN RECOGNITION

A. Data Collection and Transformation

There are over 300 steps in the semiconductor manufacturing
process. For the purposes of maintaining quality and yield, some
inspection stations are established along some of the steps in this
process. Usually, the most critical processing steps or the steps
processed by machines with a higher probability of causing
problems receive the highest priority for inspection. Normally,
about ten inspection stations are established on most product
lines. The usual machines used for defect inspection include
KLA, Tencor, and Orbot. These machines can detect visual de-
fects as small as 0.20m. Proper inspection machines are in-
stalled to collect defect data according to each machine inspec-
tion properties and capabilities. Fig. 1 shows the flow of data
analysis.

Before analysis of the collected defect data can be performed,
transformation of the data coordinates is necessary. Though the
data collection format is the same, different inspection machines
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Fig. 2. Representation of defect data relative location.

produce different original coordinates. Before storing the col-
lected data into a neutral data set, it is necessary to find out the
relative defect location and transform it into a unique coordi-
nate system. Take Fig. 2 as an example. In this figure,
means the original , -axis coordinates of a die on the wafer
and is the actual , axis location in that die. The
coordinate transformation can be executed using the following
process:

where
original axis coordinates of a die on the wafer;
original axis coordinates of a die on the wafer;
length of the die dimension;
width of the die dimension;
actual axis locations on the die;
actual axis locations on the die.

B. Design the Input Vector

The input vector of the training samples is also named the
characteristic vector. The number of processing units depends
upon the type of problems to be studied. A linear transformation
function is usually used to pass the input vector into the next
layer. The design of the input vector differs for every product
type. The number of dies in a specific product type determines
the number of nodes in the input layer. The detailed notations
are explained below and represented in Fig. 3.

number of dies per wafer;
input vector of theth sample data (wafer);
th element of the input vector.

where

if defect occurs on a die;
otherwise.

After the sample training data needed for the unsupervised
neural network has been provided the number of nodes in the
input layer and their corresponding values must be defined to
start the training process. In this research, the unsupervised
neural network was trained by product type. The reasons are
as follows.

1) The number of input processing units is the total number
of dies for a wafer. Different product types have different

Fig. 3. ART I network connections.

numbers of dies for the wafer. The collection of weights
must be prepared by product type.

2) When the network is trained by product type, this research
is extendable to a correlation with the circuit probe (CP)
data.

3) Even a single input pattern can be classified. Insufficient
data was not a concern during the neural-network archi-
tecture.

4) Even though the life cycles of certain products may not be
long, a considerable number of wafers will be produced
in fabrication. Pattern type is defined as the key field in
the knowledge base design, therefore the limits of training
the network by product type were eliminated.

C. ART1 Network Model

For the huge amount of defect map data, it is difficult to de-
cide how many clusters of defect spatial patterns in the semi-
conductor manufacturing. For this reason, learning was accom-
plished by the input data alone since the number of output pat-
terns is unpredictable. This type of learning is so-calledunsu-
pervised learning.

ART1 is an unsupervised network that accepts binary inputs
[22]. A good knowledge-based system has to satisfy two char-
acteristics: stability and plasticity. ART1 uses a vigilance test to
learn new patterns without forgetting old knowledge and thus
can solve the contradiction between stability and plasticity. The
concept of the vigilance test is described as follows.

1) If the characteristic of a new pattern is quite similar to a
previously stored pattern (vigilance test passed), only a
slight modification of the knowledge contained in the old
patterns will be executed. The characteristics of the old
and new patterns can be satisfied and the old knowledge
can be properly retained. Stability of the system can be
maintained.

2) If the characteristics of a new pattern are not similar to all
of the previously stored patterns (vigilance test failed),
new knowledge for the new pattern will be created. This
implies quick learning of a new pattern, or the so-called
plasticity.

Because of the above two characteristics, ART1 was adopted
in this research to detect and recognize spatial defect patterns.
The construction of ART1 architecture includes an input layer,
network connection, and output layer (see Fig. 4).

There are two types of weight connections between every
input unit and output unit. The matched weight is from the input
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Fig. 4. Relationship between input vector and dies.

layer to the output layer while the similar weight is from the
output layer to the input layer.

ART 1 uses an output-processing unit to present a certain
cluster. Every connection weight between the input layer and
the output units indicates the characteristic of a specific cluster.
The number of output processing units passing the vigilance test
may exceed one so the network utilizes the match value to con-
trol the output processing units. The vigilance test is first applied
to the output processing units with the highest match value. In
general, the higher the match value possessed by an output-pro-
cessing unit, the higher its similarity. The output-processing unit
with the highest similarity is not always the one with the highest
match value.

The major characteristic of ART1 algorithm is the vigilance
value, which can be used to distinguish the similar patterns. The
vigilance test is first applied to the output processing units with
the highest matching value. However, the output-processing unit
with the highest similarity is not always the one with the highest
matching value. When a high vigilance value is assigned, few
output units will pass the test and more output units will there-
fore be created. On the contrary, the lower the assigned vigilance
value is, the fewer output units will be. So the ART1 network is
capable of detecting similar but different types of clusters. The
implementation procedure for ART1 algorithm is listed in Ap-
pendix A.

III. D ATA GENERATION AND NETWORK TRAINING

After the conceptual design of the intelligent defect recog-
nition system, a practical software system was developed
for system implementation and verification. This system was
developed using Borland C++ and SAS version 6.12, under
a Microsoft Windows 95 operating platform. Actual data
from a product with 294 dies for a wafer were provided by a
semiconductor company and tested through this system. Before
the ART1 network can be used to identify the spatial pattern
types on the wafers, the network must be trained. Due to the
difficulty in collecting sufficient defective data, sample data
was created for ART1 neural-network training. Since ART1 is
an unsupervised network, there was no need to link the input
and output vectors to attain good recognition. Instead, the input
vectors were designed to represent a symbolic pattern. This
makes it possible to train the network even without actual defect

TABLE I
PATTERNS OF THE35 SAMPLES

Fig. 5. Converge situation in ART l network.

patterns. The recognition performance can be further enhanced
when actual defective data are collected and used for training.

At the current stage, the training samples contain only the
two most frequent patterns, i.e., ring and scratch. The ring type
patterns can be divided into three types of different sizes and the
scratch type patterns can be divided into four types. The system
is trained on each type of defect using five data samples. These
samples are summarized in Table I.

The distance between the input nodes and output nodes eval-
uated the convergence of the network. The adjustment of the
vigilance value helps control the number of output nodes. In
this research, the vigilance value was set at 0.11 and the output
nodes were equal to seven. During the training processes, the
ART1 network converged in five cycles as Fig. 5 shows. The
time utilized for training 35 samples on a PC with an Intel Pen-
tium 166 and 48MB RAM was approximately 3 s.

To evaluate the training performance of ART1 network,
another unsupervised network, Kohonen self-organizing map
(SOM), is selected for comparison. SOM accepts continuous
inputs and its goal is to map an-dimension input space into
a one or two-dimension output layer such that a meaningful
topology exists within the output nodes [23]. The procedure for
generating this network is summarized in Appendix B. After
training with the same data set, the convergence condition of
the SOM network is depicted in Fig. 6. From this comparison,
ART1 obviously converges much faster than SOM in terms of
data training.

After training the two networks, 35 simulated testing data
were then applied to test whether the defect maps can be cor-
rectly recognized. The results showed that ART1 required less
learning time than SOM. The time consuming in training 35
samples on a PC with an Intel Pentium 166 and 48 MB RAM
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Fig. 6. Converge situation in SOM network

was approximately 3 s for ART1 and 30 s for SOM. Though
SOM can recognize different defect maps, it is not capable of de-
tecting similar defect maps such as the ring type with different
radii. ART1 can not only correctly recognize different defect
maps, but also be capable of distinguishing similar but different
defect maps. Therefore, ART1 is more adequate for the recog-
nition of defects.

IV. EXPERIMENTAL RESULTS

In this section, the pretrained ART1 network is used to recog-
nize real defect maps. A semiconductor company provided 14
actual data from a DRAM product with 294 dies for a wafer.
Twelve of these were visually judged to have ring type patterns
and the other two exhibited random type patterns. Because the
total number of dies for this DRAM product type was 294, the
number of input nodes was 294 in the ART1 network. It is ex-
pected that the number of outputs corresponding to the number
of patterns would be seven. The adjustment of the vigilance
value in the network learning stage helps control the number
of output nodes. In this research, the vigilance value was set at
0.11 and the output nodes were equal to seven.

With the trained ART1 network, every new pattern was clas-
sified according to the maximum match value. The match value
indicated the degree of match with the recognized spatial pat-
terns. When all of the matched values were smaller than a pre-
determined threshold, , the input pattern could not be clas-
sified into any specific cluster. If this value were set high, the
maps classified into the same cluster would have a very sim-
ilar pattern. When the value was set to one, only the completely
identical maps would be classified into one cluster. In this re-
search, the threshold was empirically determined to be 0.3.

In the following are the four possible situations in which an
input pattern would be fed into the ART1 network (see Fig. 7).

1) In maps 1 and 2, both ring and scratch type defects are rec-
ognized. The scratch type defect received a higher match
value (0.6524). Fig. 8 depicts the two inspected maps and
the trained scratch pattern. It can be observed from this
figure that the scratch-type defect is usually part of the
ring-type defect. So when a map is recognized to have
significant match values for both types of defect, it is clas-
sified as a ring type.

Fig. 7. Possible results of ART 1 analysis.

2) For maps 3 and 4, special signatures were detected, but
could not be recognized by the ART1 network. The
most possible reason is insufficient sample data. In other
words, this particular ring size had not been trained into
the ART1 procedure. For this reason, map 3 was treated
as sample data and sent into the ART1 pretraining pro-
cedure to create a new pattern type. After this retraining
procedure, map 4 could then be successfully recognized
with a match value of 0.9873.

Case 1: Match value (normal defect map)
No signature for clustered defects existing in a wafer. Defects

fall on the wafer randomly or cluster in a small area without any
significant pattern.

Case 2: Match value (unrecognized pattern type)
There are situations when special signatures exist but cannot

be recognized by the ART1 network. This is because the system
has not been trained on certain important defect patterns. When
an unrecognized pattern type is encountered, the ART1 network
should be retrained.

Case 3: Match value and more than one pattern is rec-
ognized

It is possible that two or more match values are greater than
, and there is no significant difference existing between these

match values. Again, the input pattern can be sent back to the
ART 1 and the output-processing unit readjusted for further
analysis.

Case 4: Input pattern match values and a specific pat-
tern type is recognized.

After inputting the 14 test maps into the trained ART1
network, the testing results can be generated within seconds.
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Fig. 8. Misjudgment of defect pattern.

TABLE II
ART I RECOGNITION RESULTS

Table II summarizes the results obtained. It can be observed
from this table that maps 5–14 were correctly recognized. The
reason why maps 1–4 could not be correctly recognized is
explained as below.

From the experimental results in the 14 defect maps above,
the method developed achieved the expectation of automatically
recognizing the spatial patterns of clustered defects. The diag-
nosed results can help engineers determine which processing
steps or machines in the fabrication process induced such spa-
tial patterns.

V. CONCLUSIONS

In the semiconductor industry, the primary cause of IC yield
loss can be attributed to defects on the wafer. In practice, engi-
neers usually spend much time checking entire defect maps in
lots and choose the maps having clustered defect spatial signa-
tures. When these defects are clustered, the size and shape of
the spatial pattern indicates specific process problems. Because
the patterns are not well defined, the similarities between these
patterns are difficult to decide. Without an automated approach,
however, gathering and analyzing the defect data can take days
or even weeks in some cases. In view of this, this research de-
veloped an intelligent system, which can recognize the spatial
patterns of clustered defects to help in the diagnosis of possible
failure causes. The system features a modular structure and in-
corporates the ART1 technique. The experimental results show
that this approach provides not only the automated classification
of known patterns but also the detection of new unknown pat-
terns. When training the new patterns, ART1 consumes less time
in comparison with the SOM architecture. The major restriction
of the ART1 network is its limited capability for die-level only,
i.e., it can classify patterns of defective die, but not patterns of
defects.

Actual data obtained from a semiconductor manufacturing
company were tested through this system. All of the actual de-
fect maps could be recognized and discrimination was accom-
plished between the systematic and random type defects. Due
to the difficulties in collecting actual data from semiconductor
manufacturing companies, the inclusion of other types of spa-
tial pattern defects will be the future extension of this research.
Another possible extension is the incorporation of CP (circuit
probe) maps and defect knowledge to increase the capability for
recognizing defect spatial patterns and determining the possible
causes in the process.

APPENDIX A

The ART I algorithm can be expressed in the following steps
[21]:

Step 1. Initially the weight are ini-
tialized to the same low value which
should be

where is the number of components in
the input vector and is a constant,
typically .

Step 2. When an input pattern, , is
presented to the network, the recog-
nition layer selects the winner as the
maximum of all the net outputs:

where is the number of neurons in the
comparison layer.



372 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 13, NO. 3, AUGUST 2000

Step 3. Perform the vigilance test. A
neuron is declared to pass the vigi-
lance test, if and only if,

where is the vigilance threshold.
Step 3a. If the winner fails the test,

mask the current winner and go to Step 2
to select another winner.

Step 3b. Repeat the cycle (Step 1 through
2a) until a winner is determined that
passes the vigilance test, then go to
Step 5.

Step 4. If no neuron passes the vigilance
test, create a new neuron to accommodate
the new pattern.

Step 5. Adjust the feedforward weights
for the winner neuron. Update the feed-
back weights from the winner neuron to
its inputs.

APPENDIX B

The Kohonen SOM algorithm can be expressed in the fol-
lowing steps [21]:

Step 1. Initialization:
Initialize the weight vectors , the
leaming rate and the neighborhood
function . Both learning rate and
neighborhood function should be large
initially.

Step 2. For each vector in the samples,
perform steps 2a, 2b and 2c.

Step 2a. Place the sensory stimulus
vector, onto the input layer of the
network.

Step 2b. Similarity matching:
Select the neuron whose weight vectors
best matches as the winning neuron.
Using the Euclidean criteria, the index
of the winning neuron will be

where

Step 2c. Training:
Train the weight vectors such that neu-
rons within the activity bubble are
moved toward the input vector as fol-
lows:

Step 3. Update the learning rate, :
A linear decrease of the leaming rate
should produce satisfactory results.

Step 4. Reduce the neighborhood function,
.

Step 5. Check stopping condition:
Exit when no noticeable change to the
feature map has occurred.
Otherwise go to Step 2.
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